乾湿繰返しが混和材を使用した コンクリートの細孔構造と凍結融解抵抗性 に及ぼす影響に関する検討

住友大阪セメント株式会社 〇宮薗雅裕 東京大学 生産技術研究所 岸 利治

混和材の使用が乾湿繰返しによる 細孔構造と凍結融解抵抗性に及ぼす影響

名称	記号	概要
水	W	上水道水
セメント	С	早強ポルトランドセメント 密度:3.13g/cm ³
混和材	SF	<mark>シリカフューム</mark> 密度:2.25g/cm ³
	BFS	<mark>高炉スラグ微粉末</mark> 密度:3.04g/cm ³
細骨材	SF	山砂 表乾密度:2.57g/cm ³ 吸水率:2.27%
粗骨材	G	砕石 表乾密度:2.65g/cm ³ 吸水率:0.64%
		最大寸法:20mm
混和剤	AD	AE減水剤 リグニンスルホン酸化合物と
		ポリカルボン酸エーテルの複合体
	SP	高性能AE減水剤 ポリカルボン酸コポリマー

モルタル	W/C	単位量(kg/m ³)				
	(%)	W	HC	BFS	SF	S
HC		308	560	-	-	1120
HC+SF	55	308	448	_	$112_{20\%}$	1120
HC+BFS		308	280	280	-	1120

コンクリート	W/C	単位量(kg/m ³)						
	(%)	W	HC	BFS	SF	S	G	AD
HC	55	168	305	-	-	797	1005	3.360
HC+SF		168	244	-	61	788	994	3.055
HC+BFS		168	153	153	-	796	1003	3.360

実験水準:配合と乾湿繰返し回数

漸次繰返し圧入法

(測定イメージ)

6

実験水準:配合と養生方法

実験水準	前養生	乾湿繰返し工程
水中浸清	水中、	
	14日	湿潤21日
促谁乾燥	水中、	
	14日	乾燥21日
乾湿×6	水中、	乾燥3日、乾燥2日、乾燥3日、乾燥2日、乾燥3日、乾燥2日、
	14日	湿潤1日湿潤1日 湿潤1日 湿潤1日 湿潤1日湿潤1日

吸水量	乾湿繰返しの <mark>湿潤工程と乾燥工程の質量差</mark> 供試体:10×10×40cmコンクリート
凍結融	乾湿繰返し後の供試体を評価 JISA 1148 (A法)
解試験	供試体:10×10×40cmコンクリート

7

①乾湿繰返しによる細孔構造の変化

🐤 SUMITOMO OSAKA CEMENT CO., LTD.

②乾湿繰返しが吸水量に及ぼす影響

SUMITOMO OSAKA CEMENT CO., LTD.

9

③乾湿繰返しが凍結融解抵抗性に及ぼす影響

結合材種類、養生方法に拘わらず同程度 →乾湿繰返しが耐久性指数に及ぼす影響は僅か

質量減少率および外観状況

11

HC+SFは乾湿繰返しを与えても質量減少は僅か

HCに乾湿繰返しを与えた場合

- 毛細管空隙の連続性増加
- 供試体表層部からの水分移動量が増加
- 凍結融解試験による表層劣化が発生

<u>HC+BFS,HC+SFに乾湿繰返しを与えた場合</u>

- 空隙構造の変化を抑制
- 供試体表層部からの水分移動を抑制
- 凍結融解試験による表層劣化を抑制