乾湿繰返しが混和材を使用した コンクリートの細孔構造と凍結融解抵抗性 に及ぼす影響に関する検討

住友大阪セメント株式会社 ()宮薗雅裕 東京大学 生產技術研究所

岸 利治

研究背景

JIS A 1148 凍結融解試験

- ・標準養生供試体
- ・適切な配合(空気量等)
 - ⇒高い耐久性指数

曝露供試体 or 実構造物

⇒耐凍害性が低下

乾湿繰返しによって, 連続性が高く水分移動 特性の高い毛細管空隙 量が増加,凍結融解抵 抗性が低下(2017)CI)

研究目的

混和材の使用が乾湿繰返しによる 細孔構造と凍結融解抵抗性に及ぼす影響

使用材料

名称	記号	概要				
水	W	上水道水				
セメント	С	早強ポルトランドセメント 密度:3.13g/cm ³				
混和材	SF	シリカフューム 密度:2.25g/cm³				
在日本日本	BFS	高炉スラグ微粉末 密度:3.04g/cm ³				
細骨材	SF	山砂 表乾密度:2.57g/cm ³ 吸水率:2.27%				
粗骨材	G	砕石 表乾密度:2.65g/cm ³ 吸水率:0.64%				
		最大寸法:20mm				
混和剤	AD	AE減水剤 リグニンスルホン酸化合物と				
	ΑD	ポリカルボン酸エーテルの複合体				
	SP	高性能AE減水剤 ポリカルボン酸コポリマー				

配合

モルタル	W/C	単位量(kg/m³)				
	(%)	W	HC	BFS	SF	S
HC		308	560	_	_	1120
HC+SF	55	308	448	-	112	1120
HC+BFS		308	280	280	-	1120

コンクリート	W/C	単位量(kg/m³)						
	(%)	W	HC	BFS	SF	S	G	AD
HC	55	168	305	-	_	797	1005	3.360
HC+SF		168	244	-	61,	788	994	3.055
HC+BFS		168	153	153	-	796	1003	3.360

①乾湿繰返しによる細孔構造の変化

実験水準:配合と乾湿繰返し回数

実験水準	前養生	乾湿繰返し工程
乾湿×0	水中 14日	
乾湿×1	水中 14日	乾燥3日
乾湿×4	水中 14日	乾燥3日 乾燥2日 乾燥3日 乾燥2日
乾湿×6	水中 14日	乾燥3日 乾燥2日 乾燥3日 乾燥2日 湿潤1日 湿潤1日 湿潤1日 湿潤1日 湿潤1日

実験方法

毛細管空隙の連続性評価

供試体:5mm角に成形したモルタル

使用機器:水銀圧入ポロシメータ

測定手法:漸次繰返し圧入法(音田2008)

漸次繰返し圧入法

(測定イメージ)

毛細管空隙の連続性評価 水銀の加圧・減圧を7STEP に分けて空隙径10-3000nm の範囲で段階的に実施

連続性の高い空隙

SUMITOMO OSAKA CEMENT CO., LTD.

②乾湿繰返しによる凍結融解抵抗性の変化

実験水準:配合と養生方法

実験水準	前養生	乾湿繰返し工程		
水中浸漬	水中			
	14日	湿潤21日		
促進乾燥	水中、			
	14日	乾燥21日		
乾湿×6	水中、	乾燥3日、乾燥2日、乾燥3日、乾燥3日、乾燥2日		
十八一一十八十八	14日	湿潤1日 湿潤1日 湿潤1日 湿潤1日 湿潤1日湿潤1日		

実験方法

吸水量	乾湿繰返しの <mark>湿潤工程と乾燥工程の質量差</mark> 供試体:10×10×40cmコンクリート
凍結融	乾湿繰返し後の供試体を評価 JIS A 1148 (A法)
解試験	供試体:10×10×40cmコンクリート

◆:総空隙量

■:インクボトル

▲:連続性の高い空隙

8

①乾湿繰返しによる細孔構造の変化

②乾湿繰返しが吸水量に及ぼす影響

③乾湿繰返しが凍結融解抵抗性に及ぼす影響

相対動弾性係数

結合材種類、養生方法に拘わらず同程度 →乾湿繰返しが耐久性指数に及ぼす影響は僅か

質量減少率および外観状況

HC+SFは乾湿繰返しを与えても質量減少は僅か

HCに乾湿繰返しを与えた場合

- 毛細管空隙の連続性増加
- 供試体表層部からの水分移動量が増加
- 凍結融解試験による表層劣化が発生

HC+BFS,HC+SFに乾湿繰返しを与えた場合

- 空隙構造の変化を抑制
- 供試体表層部からの水分移動を抑制
- 凍結融解試験による表層劣化を抑制